α 5 integrin (Developmental Studies Hybridoma Bank)
Structured Review

α 5 Integrin, supplied by Developmental Studies Hybridoma Bank, used in various techniques. Bioz Stars score: 94/100, based on 76 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
https://www.bioz.com/result/α 5 integrin/product/Developmental Studies Hybridoma Bank
Average 94 stars, based on 76 article reviews
Images
1) Product Images from "The phosphatase PPM1F, a negative regulator of integrin activity, is essential for embryonic development and controls tumor cell invasion"
Article Title: The phosphatase PPM1F, a negative regulator of integrin activity, is essential for embryonic development and controls tumor cell invasion
Journal: BMC Biology
doi: 10.1186/s12915-025-02254-3
Figure Legend Snippet: Increased integrin β1 activity, elevated cell adhesion, and migration defects of ppm1f-/- MEFs are reverted by re-expression of wildtype PPM1F. A PPM1F-/- MEFs were transduced with lentiviral particles encoding human wildtype PPM1F (hWT) or human PPM1F D360 A (hDA) in a bi-cistronic expression cassette with GFP. In addition, PPM1F-/- MEFs and PPM1F +/+ cells were transduced with a lentivirus encoding GFP alone. WCLs of sorted cells were analyzed by Western blotting with the indicated antibodies; as controls, WCLs of 293 T cells transfected with the empty vector (mock), GFP (GFP) or murine PPM1F (mWT) were loaded. B MEFs as in ( A ) were seeded onto 1 µg/ml FN III9-12 for 2 h. Samples were fixed and stained for talin (upper panel) or the active integrin β1 (lower panel) before analysis by confocal microscopy; scale bar: 20 µm. Insets show higher magnification of boxed areas; scale bar: 5 µm. Arrowheads point to active integrin β1 or talin enrichment. C MEFs as in ( A ) were kept in suspension for 45 min and incubated for 15 min with 10 µg/ml FN III9-12 (FN). Samples were stained for total (Hmb1-1) or active β1 integrin (9EG7) and analyzed by flow cytometry, ≥ 10 000 counts. The mean fluorescence intensity (MFI) ratio of active to total β1 integrin was calculated and normalized to the wildtype sample (= 1). Scatter blots represent mean ± SEM of 4 independent experiments; statistics was performed using one-way ANOVA and Bonferroni post-hoc test ( p *** < 0.001, ns = not significant). D MEFs were seeded in triplicates onto fibronectin-coated wells for 60 min and cell adhesion was quantified. Representative pictures from cells seeded on 10 µg/ml FN (left panel); scale bar: 150 µm. Scatter blots represent mean ± SEM of 5 independent experiments performed in technical triplicates each. Values were normalized to MEF wildtype cells (= 1). Statistics was performed using one-way ANOVA, followed by Bonferroni post-hoc test (** p < 0.01, * p < 0.05, ns = not significant). E MEFs were seeded onto indicated fibronectin concentrations for 45 min, fixed and stained with DAPI and Phalloidin-Cy5. Samples were imaged using confocal microscopy. Representative images from cells seeded onto 10 µg/ml FN are shown; scale bar: 10 µm (left panel). Quantification of cell spreading. Boxes and whiskers indicate median with 95% confidence intervals from 2 independent experiments; n ≥ 90 cells. Statistics was performed using one-way ANOVA, followed by Bonferroni post-hoc test (*** p < 0.001, ns = not significant) (right panel). F Serum starved MEFs were stimulated by addition of 10% FCS and cell migration was monitored every 30 min for 12 h using time-lapse microscopy. Cell tracks were evaluated for velocity, covered distance and directionality. Boxes and whiskers indicate median with 95% confidence intervals from 2 independent experiments ( n = 30); Statistics was performed as in ( E ); *** p < 0.001, * p < 0.05, ns = not significant. See also Additional_File2
Techniques Used: Activity Assay, Migration, Expressing, Transduction, Western Blot, Transfection, Plasmid Preparation, Staining, Confocal Microscopy, Suspension, Incubation, Flow Cytometry, Fluorescence, Time-lapse Microscopy
Figure Legend Snippet: PPM1F contributes to the invasive phenotype of tumor cells. A WCLs from indicated cancer cell lines were analyzed by Western blotting with α-human PPM1F or α-integrin β1 antibodies. α-Tubulin antibody was used as loading control. B , C Indicated serum-starved cancer cells were seeded on top of a Matrigel basement membrane (30 µg/100 µl) in Boyden chamber cell invasion assays using 20% FCS as stimulus or 2% BSA to evaluate random invasion activity. NIH3 T3 cells served as non-invasive control cells. Representative pictures of the lower porous membrane surface (20x) are shown in (B); scale bar: 50 µm. Crystal violet-stained cells can be distinguished from the 8 µm membrane pores. Cells were evaluated for invasion after 24 h by dye elution with 10% acetic acid and absorbance measurement at 590 nm. Graph in ( C ) shows quantified means ± SEM from three independent experiments. Statistics was performed using one-way ANOVA and Bonferroni post-hoc test ( p *** < 0.001, p ** < 0.01, ns = not significant). D MCF-7 cells were stably transduced with lentiviral particles harboring a bicistronic GFP and hPPM1F wildtype or hPPM1F D360 A expression cassette and single-cell sorted via flow cytometry for GFP positive cells to obtain a mixed population of PPM1F-overexpressing MCF-7 cells (PPM1F + + and PPM1F D360 A + +). WCL of the wildtype and modified cell lines were analyzed by Western blotting with indicated antibodies. α-tubulin antibody (lowest panel) served as loading control. E Serum-starved cells from ( D ) were seeded on top of a Matrigel base (30 µg/100 µl) in Boyden chambers. Cell invasion was stimulated by addition of 20% FCS or 2% BSA to the lower chamber. Representative pictures of the lower porous membrane surface (20x) are shown; scale bar: 50 µm. Crystal violet-stained cells can be distinguished from the 8 µm membrane pores. Invasion was quantified by dye elution. Graph (right) shows means ± SEM from four independent experiments performed in triplicate. Statistics as in ( C )
Techniques Used: Western Blot, Control, Membrane, Activity Assay, Staining, Stable Transfection, Transduction, Expressing, Flow Cytometry, Modification
Figure Legend Snippet: Genetic deletion of PPM1F in tumor cells diminishes matrix invasion and integrin phosphorylation. A WCLs from A172 wildtype cells and two clonal PPM1F KO cell lines (1 and 2) were analyzed by Western blotting using the indicated antibodies. α-Tubulin antibody was used as loading control. B Serum starved A172 wildtype cells and PPM1F KO cell lines (clone 1 and clone 2) were seeded in triplicate onto fibronectin-, vitronectin-, or 2% BSA-coated wells for 60 min either in presence of 50 µM cilengitide or DMSO as control. Wells were washed and adherent cells were stained with crystal violet. Representative pictures are shown; scale bar: 150 µm. C Adherent crystal violett stained cells from ( B ) were quantified by dye elution. Graph depicts individual values as well as mean ± SEM of 4 independent experiments performed in technical triplicates. Statistics was performed using one-way ANOVA, followed by Bonferroni post-hoc test (*** p < 0.001; ** p < 0.01; p * < 0.05; ns = not significant) and shown for the PPM1F knock-out clones in relation to the A172 wildtype cells. D Serum-starved cells as in ( C ) were seeded on top of a Matrigel base (30 µg/100 µl) in Boyden chambers and cell invasion was stimulated by addition of 20% FCS or 2% BSA to the lower chamber. Cells were evaluated for invasion after 24 h and representative pictures of the lower porous membrane surface (20x) are shown; scale bar: 50 µm. Crystal violet-stained cells can be distinguished from the 8 µm membrane pores (left). Invasion assays were quantified by dye elution. Graph depicts individual values as well as means ± SEM from four independent experiments performed in triplicate. Statistics as in ( C ). See also Additional_File4 and Additional_File5
Techniques Used: Phospho-proteomics, Western Blot, Control, Staining, Knock-Out, Clone Assay, Membrane
Figure Legend Snippet: Increased integrin-based cell adhesion in PPM1F-deficient cells prohibits cell spreading despite elevated PAK activity. A Serum-starved A172 wildtype, sgRNA control and PPM1F KO cells were seeded onto 2 µg/ml FN III9-12 for 45 min and WCLs were subjected to Western blotting with indicated antibodies (left panel). Graphs (right panel) show densitometric quantification of band intensities from pThr402PAK2 versus PAK antibody signal for the indicated samples from 5 independent experiments; wildtype was set to 1. Statistics were performed using one-way ANOVA, followed by Bonferroni post-hoc test (* p < 0.05, ns = not significant). B Serum-starved A172 wildtype and PPM1F KO cells were seeded onto 2 µg/ml FN III9-12 for 1.5 h, fixed and F-actin was stained. Samples were imaged using confocal microscopy. Representative pictures are shown; scale bar: 20 µm. C Cells as in ( B ) were seeded for 2 h on surfaces coated with 10 µg/ml fibronectin or poly-L-lysine, before fixation, F-actin staining and analysis by confocal microscopy; scale bar: 10 µm. D Spreading assays were performed with serum-starved A172 wildtype and PPM1F KO cells re-expressing mKate2 or re-expressing PPM1F-mKate2 cells, pre-treated with 5 µM DMSO or FRAX597 (PAK1-3 inhibitor) for 45 min in suspension before seeding onto 2 µg/ml FN III9-12 for 1.5 h. Cells were fixed, stained for F-actin and the covered area was quantified in ImageJ. Boxes and whiskers indicate median with 95% confidence intervals from two independent experiments; n ≥ 30 cells; dots indicate outliers. Statistics was performed using one-way ANOVA, followed by post-hoc Bonferroni test, (*** p < 0.001, ns = not significant). E Serum-starved cells as in ( D ) were pre-treated with 5 µM DMSO or FRAX597 (PAK1-3 inhibitor) for 45 min in suspension before seeded onto 2 µg/ml FN III9-12 for 1.5 h. Cells were fixed and stained for active integrin β1. Cells were imaged by confocal microscopy. Representative pictures are shown; scale bar: 10 µm. See also Additional_File6 and Additional_File7
Techniques Used: Activity Assay, Control, Western Blot, Staining, Confocal Microscopy, Expressing, Suspension

![In vitro binding affinity and stability studies of [ 64 Cu]QM-2301, [ 64 Cu]QM-2302, and [ 64 Cu]QM-2303. (A) SPR sensorgrams demonstrating the binding affinity of QM-2301, QM-2302, and QM-2303 for human <t>integrin</t> α 5 β 1 in a concentration-dependent manner. (B) The equilibrium dissociation constant ( Κ D ) of each peptide was calculated based on SPR measurements. The K D values of each precursor are shown. (C, D) Schematic diagram of the binding patterns of [ 64 Cu]QM-2301, [ 64 Cu]QM-2302 (C), and [ 64 Cu]QM-2303 (D) to integrin α 5 β 1. Monomeric [ 64 Cu]QM-2301, and [ 64 Cu]QM-2302 bind to receptors in a single-network pattern. For [ 64 Cu]QM-2303, the PEGibody-based radiotracer, one PEGibody can bind to more than two integrin α 5 β 1 receptors, exhibiting better binding affinity. (E, F) The expression of integrin α 5 β 1 in B16F10 cells was analyzed by flow cytometry (E) and Western blotting (F). For flow cytometry assays, an anti-integrin α 5 + β 1 antibody was used. For Western blot assays, integrin α 5 (∼150 kDa) and integrin β 1 (∼138 kDa) were examined using two antibodies. (G) The stability of [ 64 Cu]QM-2301, [ 64 Cu]QM-2302, and [ 64 Cu]QM-2303 after coincubation with mouse serum within 1 h, as indicated by radio-HPLC. (H) I n vitro cell uptake of [ 64 Cu]QM-2301, [ 64 Cu]QM-2302, and [ 64 Cu]QM-2303 (750 KBq/mL) when incubated with B16F10 cells for different time period. (I) IC 50 of [ 64 Cu]QM-2301, [ 64 Cu]QM-2302, and [ 64 Cu]QM-2303 when inhibited with antibodies at different concentrations. ∗ P < 0.05, ∗∗ P < 0.01. All the quantitative experiments were performed independently at least three times (data are the mean ± SD, n = 3).](https://pub-med-central-images-cdn.bioz.com/pub_med_central_ids_ending_with_9959/pmc11959959/pmc11959959__gr2.jpg)

